Double Duty Defense - Optimizing Seawalls TidalWatts as a Solution to Power in Coastal Regions

Challenge

To consider and optimize the additional uses of flood protection structures like seawalls, dykes etc. Economic feasibility and environmental impact needed to be considered.

Solution- TidalWatts

- Utilize the robust structure of pre-existing seawalls to mount piers from
- Install turbines from these piers to create energy for coastal region
- Use Eco-concrete to build piers and further strengthen the seawalls to allow marine ecosystem to flourish

Rationale

Seawall	They are robust and provides the base needed for piers Saves money, time and energy in looking for new sites Optimizes seawalls by creating an aesthetically pleasing	
Piers	Can be extended to depths required for optimal loc Allows necessary water flow for energy production More jobs created along the piers and seawall	
Eco-concrete	 Mixture 5% stronger than normal concrete 80% less carbon footprint Mimics natural structure Brings back marine life Striving marine life means more fish Brings more economic opportunity to coastal region 	
Tidal Energy	Unlike storms is predictable. Truly renewable as long as moon-earth gravitational sys	
Water Turbines	Water density is 800 times that of air, slow movement a Conversion of kinetic energy to electrical with no distur	

Sources

- tps://link.springer.com/article/10.1007/s40722-016-0044-8
- ttps://www.power-technology.com/features/featuretidal-giants-the-worlds-five-biggest-tidal-power-plants-4211218/
- tps://simecatlantis.com/services/turbines/
- ttps://pt.slideshare.net/shubhamdixit98837/tidal-generaters-how-do-they-work
- https://www.nationalgeographic.org/encyclopedia/storm-surge/
- ttps://econcretetech.com/tide_pools_pile_encasement_brooklyn_bridge/

Ashley Cao & Michell Harper

g space and commerce on of turbines

through fishing in a sustained way

stem exists

allows a lot of energy rbance to natural flow of water

Fig 1: 4 bladed turbines instead of 3 bladed to reduce marine life damage

begin to make revenue after 10 years according to the Cash flow chart. Maximum output per turbine 2MW with current speed of 3m/s TidalWatts Cash Flow Chart

Schematics and Environmental Impact

Fig 2: Extend working pier or extension of seawall so as to reach 20-30 m depth. Vertical alignment of turbines

Fig 3: Eco-concrete before and after to show how marine life thrives when used. 80% less carbon footprint

Economics

TidalWatts Objective: To power 1500-3000 homes in coastal regions. Galveston was taken as the average coastal city. TidalWatts would

Expenditure	Amount (\$)	Yearly Income	Amount (\$)
Capital Expenditure	25,000,000	Energy Consumption@11.4c/KWh	4,000,000
Running Cost/year	1,000,000	Commercial use of pier+ seawall	4,000,000
Energy Production/year@1.5c/KWh	500,000	Recreational	1,000,000
Maintenance 1: Year 2030	500,000	Total Income	9,000,000
Maintenance 2: Year 2035	5,000,000		

Challenges and regulations

• Technology still in infancy hence upfront cost is high compared to other renewable energy sources • Environmental impact though low can be there on marine life due to the turbines

• Scouring of the base of piers could lead to erosion. Saltwater effect on machinery need to also be assessed

• All EPA, US Energy Department, Water Acts, Americans Jobs creation act etc. must be adhered to and understood • Ensured licensing by the FERC, and permitting by the U.S. Army Corps of Engineers

• Public (state or federal) and private investment and co-operation needed

• Skill sets required are marine biologist, R&D, engineers, lawyers, lobbyists, geologists, architects, investors